Sensor surfaces functionalized with peptides

Specifically biofunctionalized surfaces of sensors, in particular immunosensors can be best prepared with peptides due to their high structural diversity. We applied anodic electropolymerization and photocrosslinking for covalent and microstructured fixation on various surfaces.  Matrix supported lipid-bilayer membranes were developed on the basis of lipopeptides, which allow the construction of artificial membrane bound receptors and transport systems. The microstructured peptide functionalized surfaces were analyzed by fluorescence-, confocal- and IR-microscopy, plasmon resonance, ELISA and assays including the directed growth of nerve cells and microorganisms. Reflectometric Interference Spectroscopy (RIfS) has been applied for online monitoring of syntheses on surfaces and detection of ligand/ receptor interactions.

On line Monitoring of Solid Phase Synthesis with RIfS

Anodic polymerisation on sensor surfaces

W. Beck, J. Metzger, K-H. Wiesmüller, and G. Jung (1992). Immunosensors on the Basis of Lipopeptides (Part of “Biosensors Based on Receptors”, by F. Jähnig, G. Jung, G. Gauglitz, and W. Göpel), in: F. Scheller and R. D, Schmid (eds.), Biosensors: Fundamentals, Technologies and Applications, GBF Monographs, Vol.17, pp. 163-186, VCR Verlagsgesellschaft, Weinheim.

W. Beck, G. Gauglitz, V. Heilig, and G. Jung (1992). Spectral Monitoring of Antibody- Hapten Interactions at Liposomal Membranes, Fresenius, J. Anal. Chem. 343, 97.

M. Knichel, P. Heiduschka, W. Beck, G. Jung, and W. Göpel (1995). Utilisation of a Self-Assembled Peptide Monolayer for an Impedimetric Immunosensor, Sensors & Actuators B 28, 85-94.

J. Rickert, T. Weiss, W. Kraas, G. Jung, and W. Göpel (1995). A New Affinity Biosensor: Self-Assembled Thiols as Selective Monolayer Coatings of Quartz Crystal Microbalances, Biosenors and Bioelectronics 11, 591-598.

J. Rickert, P. Heiduschka, W. Beck, G. Jung, and W. Göpel (1995). “Mixed” Self-Assembled Monolayer for an Impedimetric Immunosensor, Biosensors and Biolelectronics 11, 757-768.

P. Heiduschka, W. Göpel, W. Beck, W. Kraas, S. Kienle, and G. Jung (1996). Microstructured Peptide-Functionalized Surfaces by Electrochemical Polymerisation, Chem. Eur. J. 2, 667-672.

R. Tünnemann, M. Mehlmann, R.D. Süßmuth, B. Bühler, S. Pelzer, W. Wohlleben, H.-P. Fiedler, K.-H. Wiesmüller, G. Gauglitz, and G. Jung (2001). Optical Biosensors. Monitoring Studies of Glycopeptide Antibiotic Fermentation Using White Light Interference, Anal. Chem. 73, 4313-4318.

M. Boncheva, C. Duschi, W. Beck, G. Jung, and H. Vogel (1996). Formation and Characterization of Lipopeptide Layers at Interfaces for the Molecular Recognition of Antibodies, Langmuir 12, 5636-5642.

D. Leipert, P. Heiduschka, J. Mack, H.J. Egelhaaf, D. Oelkrug, and G. Jung (1998). Spatially Resolved Immobilization of Peptides by Electrochemical, Polymerization after Photolytic Cleavage of a Protecting Group, Angew. Chem. 110, 2471-2474; Angew. Chem. Int. Ed. Engl. 37, 2337-2340.

D. Leipert, N. Nopper, M. Bauser, G. Gauglitz, and G. Jung (1998). Investigation of the Molecular Recognition of Amino Acids by Cyclopeptides with Reflectometric Interference Spectroscopy, Angew. Chem. 110, 3503-3505; Angew. Chem. Int. Ed. Engl. 37, 3308-3311.

M. Huber, P. Heiduschka, S. Kienle, C. Pavlidis, J. Mack, T. Walk, G. Jung, and S. Thanos (1998). Modification of Glassy Carbon Surfaces with Synthetic Laminin-derived Peptides for Nerve Cell Attachment and Neurite Growth, J. Biomed. Mater. Res. 41, 278-288.

H.-M. Haake, R. Tünnemann, A. Brecht, V. Austel, G. Jung, and G. Gauglitz (2002). Online Monitoring of Solid Phase Peptide Syntheses on Glass Type Surfaces Using White Light Interference, Anal. Biochem. 300, 107-112.

S. Voss, R. Fischer, G. Jung, K.-H. Wiesmüller, and R. Brock (2007). A Fluorescence-Based Synthetic LPS Sensor, J. Am. Chem. Soc. 129, 554-561.

%d bloggers like this: